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ABSTRACT 
 

Structural optimization, when approached by conventional (gradient based) minimization 
algorithms presents several difficulties, mainly related to computational aspects for the huge 
number of nonlinear analyses required, that regard both Objective Functions (OFs) and 
Constraints. Moreover, from the early '80s to today's, Evolutionary Algorithms have been 
successfully developed and applied as a computational alternative to many optimization 
problems, such as structural ones. In this study the effectiveness of a relatively new 
Evolutionary Algorithm, namely Differential Evolutionary, is investigated for constrained 
optimization. This presents many interesting advantages and so that it is a candidate to be 
widely used in many real structural optimization problems. The algorithm version here used 
has been developed by hybridizing some recent versions of Differential Evolutionary 
algorithms proposed in literature, and uses a specific way for dealing with constraints which, 
always, concern real structural optimization problems. The effectiveness of proposed 
approach has been demonstrated by developing two cases of study, which regard simple but 
very significant structural problems for steel structures, one of which is a standard benchmark 
in structural optimization. The analyses show the simplicity and effectiveness of the proposed 
approach, so that it can be suitably ready for practical uses out of academic contest. 
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1. INTRODUCTION 
 

Optimization problems are ubiquitous in real-world applications more than in academic 
researches. In principle, every human activity should be subject to an “optimization” in order 
to better use available resources and to maximize their efficiency. However, in front of this 
philosophical definition, in an engineering sense, optimization is a mathematical problem 
which needs of an appropriate representation of resources to be preserved and constraints to 
be satisfied. With no doubt, researchers and practitioners need an efficient and robust 
optimization approach in order to solve problems of different characteristics that are 
fundamental to their daily work. It is expected that, solving a complex optimization problem 
itself should not be very difficult; e.g. an engineer with expert knowledge of channel coding 
does not have to be an expert in optimization theory just to improve his/her code design. In 
addition, an optimization algorithm should be able to reliably converge to the true optimum, 
for a variety of different problems. Furthermore, the computing resources spent on searching 
for a solution should not be excessive. Thus, a useful optimization method should be easy to 
use, reliable and efficient to achieve satisfactory solutions. Instead of classical methods, that 
rarely (or never) present above mentioned characteristics, it is interesting to observe that some 
Evolution Algorithms (EAs) have these abilities.  

Nowadays, the use of EAs to solve optimization problems is a common practice due to 
their competitive performance on complex search spaces [1,2]. On the other hand, 
optimization problems usually include constraints in their models, but EAs, in their original 
version, do not consider a mechanism to incorporate feasibility information in the search 
process. Therefore, several constraint-handling techniques have been proposed in the 
specialized literature [3,4]. 

Specifically, Differential Evolution (DE) is a heuristic method that has yielded promising 
results for solving complex optimization problems. The potentialities of DE are its simple 
structure, easy use, convergence property, quality of solution, and robustness. Since its first 
formulation by Storn and Price [5], DE has been shown to be a simple yet efficient 
optimization approach for solving a variety of benchmark problems as well as many real-
world applications. Differential Evolution, together with Evolution Strategies (ES) [6,7], 
Genetic Algorithms (GA) [8] and Evolutionary Programming (EP) [9], can be categorized 
into a class of population-based, derivative-free methods, known as Evolutionary Algorithms 
(EAs). All these approaches mimic Darwinian evolution and evolve a population of 
individuals from one generation to another, by analogous evolutionary operations such as 
mutation, crossover and selection.  

All attractive features of EAs are in opposition to some criticisms. For instance, EAs suffer 
the lack of well posed theories about their convergence and, typically, a larger computational 
time is required. Moreover, in their original formulation they was limited to unconstrained 
problems and do not include a method to incorporate feasibility information into the fitness 
function. In effect, a primary question in structural engineering is to produce, as optimal 
solution, a feasible condition, according to all constraints involved. In more effective words, its 
simply means that engineers firstly need of solutions that satisfy all constraints. Calling as 
unfeasible all solutions that unsatisfied at least one of the problem constraints (feasible are 
solutions which satisfy all constraints), there are no cases for any engineering to use 



OPTIMAL CONSTRAINED DESIGN OF STEEL STRUCTURES BY DIFFERENTIAL... 
 

 

451 

"unfeasible" solutions in problem solving. Actually, there are different approaches for dealing 
with constrained optimization. The most popular one is the use of (mainly exterior) penalty 
functions [10], whose the aim is to decrease the tness of infeasible solutions in order to 
encourage the selection of feasible solutions. Despite its simplicity, a penalty function requires 
the denition of penalty factors to determine the severity of the penalization, and these values 
depend on the problem being solved [11]. Based on this important disadvantage, several 
alternative constraint-handling techniques have been proposed. In [12] it is developed a 
comprehensive study of DEs applied to constraints problems from a numerical point of view, 
where the efficiency in different combinations of mutations and constraint handling techniques 
is analyzed. Moreover, this important piece of paper is mainly related to dealing with the 
numerical approach in mathematical problems. On the contrary, from the engineering point of 
view, more in structural one, it is fundamental that the final solution is a feasible one, that 
simply means it satisfy all constraints. Moreover, it is possible to state that any structural 
engineering has to satisfy primary constraints, and only subsequently the level of optimization. 
In few words, one can say that the main require in structural design is "safety first" and only 
then engineers are interested in cost reduction. 

Among alternative approaches, multi-objective optimization techniques can be used to 
solve constrained problems by treating the constraint as one or several objectives. In this way, 
the constraints and the objective function are optimized simultaneously. Surry and Radcliffe 
[13] treated the constrained optimization problem as a constrained satisfaction problem, by 
ignoring the objective function and treated it as an unconstrained optimization problem by 
neglecting the constraints. In [14] the authors proposed a method based on the Pareto 
dominance concept and produced very competitive results. Besides, in [15] all constraints are 
treated as one objective and the constrained optimization it is solved as a bi-objective 
optimization problem. 

Some other popular methods treat the objective function and constraints separately. Deb 
[16] proposed a constraint handing technique based on feasibility rules for pair-wise 
comparison. In particular, feasible solutions are always better than infeasible ones; comparison 
between feasible solutions depends on the objective function values; and comparison between 
infeasible solutions depends on constraint violations. To balance dominance between the 
objective and penalty functions, Runarsson and Yao [17] proposed a Stochastic Ranking (SR) 
method. A parameter pf was used to determine the choice between the objective and the 
constraint violation when comparing two solutions in the sorting process. Inspired by fuzzy 
control theory, Takahama and Sakai [18] introduced a satisfaction level for the constraints, in 
order to indicate how well a solution satisfied the constraints, and the selection of solutions 
was conducted based on both the satisfaction level and the objective function. In addition, a 
homomorphous mapping [19] was proposed to transform the feasible region to a high-
dimensional cube with simple topology. For such kind of methods, the design of special 
operators is problem-dependent and it is difficult to generalize. 

In this study a specific constraint handling approach for DEs is developed, and advantages 
in using this modified version are presented. The algorithm here proposed is developed by a 
robust formulation and few parameters, with the aim of increase its appeal for practical 
applications. Two practical cases of study, regarding simple but significant structural 
problems for steel structures, one of which is a standard benchmark in structural optimization, 
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are analyzed. Results show the simplicity and effectiveness of the proposed approach, so that 
it can be suitably ready for practical uses out of academic contest. 

The next part of the paper is organized as follows: in section 2 the basic formulation of 
proposed DE is summarized. In section 3 the proposed algorithm is applied to optimal design 
of two simple but very effective problems of steel structures. In section 4 some conclusions 
are extrapolated. 

 
 

2. DIFFERENTIAL EVOLUTION ALGORITHM 
 

Like nearly all EAs, differential evolution algorithm is a population-based optimizer that starts 
the optimization process by sampling the search space at multiple, randomly chosen initial 
points (i.e., a population of individual vectors) [20]. Similar to ES, DE algorithm is in nature a 
derivative-free continuous function optimizer, as it encodes parameters as oating-point 
numbers and manipulates them with simple arithmetic operations such as addition, subtraction 
and multiplication. Like other evolutionary algorithms, DE generates new points that are the 
perturbations/mutations of existing points; the perturbations, however, come neither from 
samples of a default probability distribution like those in ES, not from centroid-based 
difference vectors as in some nonlinear optimization methods, such as the Nelder-Mead 
method [21]. Instead, DE mutates a (parent) vector in the population with a scaled difference 
of other randomly selected individual vectors. The resultant mutation vector is crossed over 
with the corresponding parent vector to generate a trial or offspring vectors. Then, in a one-to-
one selection process of each pair of offspring and parent vectors, the one with a better tness 
value survives and enters the next generation. This procedure repeats for each parent vector 
and the survivors of all parent-offspring pairs become the parents of a new generation in the 
evolutionary search cycle. The evolutionary search stops when the algorithm converges to the 
true optimum or a certain termination criterion such as the number of generations is reached. 

A general constrained optimization problem can be formulated as a typical minimization 
problem in the form: 

 

( ){ }min

subject to 
( ) 0, 1, ...,
( ) 0, 1, ...,

 

i p

i q

l u

f

g i n
h i n

≤ =

= =

≤ ≤

x
x

x
x

x x x

 (1)

 

 
in which x = {x1,…, xj,…,xD} is the design vector (for example the collection of D system 
parameters to be identified), xl = {x1

l,…, xj
l,…,xD

l} and xu = {x1
u,…, xj

u,…,xn
u} are its lower 

and upper bounds, respectively, and f(x) is the objective function. In addition, ( )ig x and 
( )ih x  are inequality and equality constraints, respectively. The shape of the objective function 

may have many local optima and high complex topology and, therefore, when preliminary 
information are not available, it may not always be convex. In these circumstances special 
optimizers have to be used. In the following it is illustrated the state of the art of DEa for 
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problems in form (1).  
The initial population { },0 1, ,0 2, ,0 , ,0, , ..., 1,2,...i i i D ix x x i NP= =x   is randomly generated 

according to a normal or uniform distribution, being  x xl u
j j≤ ≤x , for j=1,2,…D, where NP 

is the population size, D is the dimension of the problem, and where  x l
j  and x u

j  are the 
upper and lower limits of the j-th component of the vector x. After initialization, DE enters a 
loop of evolutionary operations: mutation, crossover and selection. 

 
2.1. Mutation 

The main idea of DEa is to construct at each generation and for each element of the population 
a mutation vector. At each generation g, this operation creates mutation vectors ,i gv  based on 

the current parent population { }, 1, , 1, , , ,, , ..., 1,2,...i g i g i g D i gx x x x i NP= = . The mutant vector is 
constructed through a specific mutation operation based on adding differences between 
randomly selected elements of the population to another element.  

Different mutation strategies frequently used in the literature are (Price at all., 2005): 
 

 DE/rand/1   , 0, 1, 2,( )i g r g i r g r gv x F x x= + −  (2) 
 
 DE/current-to-best/1   , , , , 1, 2 ,( ) ( )i g i g i best g i g i r g r gv x F x x F x x= + − + −  (3) 
 
 DE/best/1   , , , 1, 2 ,( )i g i g best g i r g r gv x x F x x= + + −  (4) 

 
where the indices r0, r1 and r2 are distinct integers uniformly chosen from the set 
{ } { } 1, 2,1, 2, ..., \ , r g r gNP i x x−  is a difference vector in order to mutate the parent, ,best gx  is 
the best vector at the current generation g, and Fi is the mutation factor which usually rangers 
on the interval (0, 1+). In classic DE algorithms,  Fi =F is a single parameter used for the 
generation of all mutation vectors, while in many adaptive DE algorithms each individual “i” 
is associated with its own mutation Fi. 

The above mutation strategies can be generalized by implementing multiple difference 
vectors other than 1, 2,r g r gx x− . The resulting strategy is named as ‘DE/–/k’ depending on the 
number k of difference vectors adopted. 

The mutation operation may generate trial vectors whose components violate the default 
boundary constraints. Possible solutions to tackle this problem include resetting schemes, 
penalty schemes, etc (Prince K., 2005). A simple method is to set the violating component to 
be the middle between the violated bound and the corresponding components of the parent 
individual, i.e.: 
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where , ,j i gv  and , ,j i gx  are the j-th components of the mutation vector ,i gv  and the parent vector 

,i gx  at generation g, respectively. This method performs well, especially when the optimal 
solution is located near or on the boundary. 

  
2.2. Crossover 

After mutation, a ‘binomial’ crossover operation forms the nal trial vector 
( ), 1, , 1, , , ,, , ...,i g i g i g D i gu u u u=  

 

 , ,
, ,

, ,

(0,1)j i g j i rand
j i g

j i g

v if rand CR or j j
u

x otherwise

≤ == 


 (6) 

 
where ( , )jrand a b  is a uniform random number on the interval (a, b] and newly generated for 

each j , int (1, )rand jj rand D=  is an integer randomly chosen from 1 to D and newly 

generated for each i, and the crossover probability [ ]0,1iCR ∈ , roughly corresponds to the 
average fraction of vector components that are inherited from the mutation vector. In classic 
DE, iCR CR=  is a single parameter that is used to generate all trial vectors, while in many 
adaptive DE algorithms, each individual “i” is associated with its own crossover probability 

iCR . 
 

2.3. Selection 

The selection operation selects the better one from the parent vector ,i gx  and the trial vector 

,i gu  according to their tness values ,( )i gf x . For example, in a minimization problem, the 
selected vector is given by: 

 

 
( ) ( ), , ,

, 1

,

i g i g i g
i g

i g

u if f u f x
x

x otherwise+

 <= 


 (7) 

 
and used as a parent vector in the next generation. The above one-to-one selection procedure 
is generally kept xed in different DE algorithms, while the crossover may have variants other 
than the binomial operation in (2.6). Thus, a DE algorithm is historically named, for example, 
DE/rand/1/bin connoting its DE/rand/1 mutation strategy and binomial crossover operation. 
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2.4. Handling Constraints  

The main aim of this work is to develop a simple and ready algorithm for structural 
optimization, able to properly treat constraints according engineering requires. In this way, a 
methodology that partially adopts the Deb feasibility rules is developed, that uses not only 
information about performance but also about feasibility of two individuals. 

Let consider the following violation function for the ith individual: 
 

 ( ) ( ){ }, ,
1

max 0, 0
q rn n

i g p i g
p

x g x
+

=

Φ = ≥∑  (8) 

 
Its value is zero if and only if all constrains are satisfied and it is a positive scalar number 
otherwise. Otherwise, the individual lies outside the feasible region. The Deb’s rule simply 
assumes that in any case a feasible individual is preferred to an unfeasible one. This is a sort of 
static domination-based selection scheme that can be formulated for as follows: 

 

 

( ) ( ){ } ( )( ) ( )( ){ }
( )( ) ( )( ){ }

, , , , ,

, 1 , , ,

,

0 0

0 0

i g i g i g i g i g

i g i g i g i g

i g

u if f u f x and x and u

x x if x and u

u otherwise
+

 < Φ = Φ =

= Φ = Φ >




 (9) 

 
Actually, it works by starting from a random initial population, that in principle (especially 

dealing with limited populations) should be of unfeasible individuals only. In this view there is 
no assurance that the final optimal solution is a feasible one, that is unacceptable from the 
practical point of view. To overcome this limitation and by using the specific aspect of DEa, 
an initial population that presents at least one feasible individual will assure a feasible final 
optimal solution. Due to specific one to one selection of DEa by using Deb feasibility rules, 
and starting with some feasible individuals in the initial population, it is assured that all 
feasible individuals will survive also in the worst case, that other feasible ones produced by 
mutation and crossover application. This simply because the Deb selection rule preserves a 
feasible solution when compared with unfeasible one. So that, the number of feasible 
individuals present in the initial population can only increase, and this gives the assurance that 
final optimal solution will be a feasible one. By using this approach an initial population check, 
that simply verifies if and how many feasible individuals are present in the initial random 
generated population, is developed. If this number isn't reached, the random generation 
continues till a minimum number of feasible individuals are really produced. At this point the 
DE starts normally by using the Deb feasible selection rule. This gives the main advantage 
(that is imperative in structural design) to produce in the worst case a low optimized, but 
feasible (that means safe), final solution.  
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3. APPLICATION OF MODIFIED DIFFERENTIAL EVOLUTION 
ALGORITHMS AND RESULTS 

 
In this section, two simple but effective cases of study are developed, regarding steel 
structures, in order to illustrate the efficiency of the proposed methodology in practical 
structural optimization problems. 

• Example 1: Optimal Design of a Simply Supported Beam with Uniformly Distributed 
Load; 

• Example 2: A Welded Beam at the free end Optimal Design loaded. 
 

The analyzed studies have been addressed according to Eurocode 3, which regulates the 
design of steel structures and to rules governing the welding UNI (UNI EN  287-1 2004, UNI 
EN 719 of 1996, UNI EN ISO 14329, 15607, 15610 and 15611 of 2005). 

 
3.1. Optimal Design of a Simply Supported Beam with Uniformly Distributed Load 

The optimization problem is aimed at determining the best section of a steel beam with a IPE 
profile, simply supported and subject to an uniformly distributed load. More in details, a steel 
double pinned beam (Fig.1a ) is considered whose modulus of elasticity E is 200 GPa and 
whose yield stress yf  is 235 MPa. The cross-section of this beam is shown in Figure 1b. 

 

 
Figure 1a. Simply supported beam with an uniformly distributed load  

 
 

              

 
Figure 1b. Cross section of IPE  

 
The optimization problem attempts to minimize the weight of this simple supported beam 



OPTIMAL CONSTRAINED DESIGN OF STEEL STRUCTURES BY DIFFERENTIAL... 
 

 

457 

in accordance with the constraints of EC3 code.  
According to Chapter III of the EC3 the following load combination is considered: 
  

 g k q kq G Qγ γ= +  (10) 
 

where 200 /kQ daN m=  and ( )2 7850 /k f f w wG b t t h daN m = +  . 

In addition, gγ  and qγ  are load safety coefficients and are assumed 1,3 and 1,5 
respectively. The function to be minimized is the weight: 

 
 ( )2w fw L A Aγ= +  (11) 

      
For this structure the following optimization problem is then posed: 
 

Minimize  
 ( ) 4( ), , , ,f f w ww t b t h= ∈x x R  (12) 

 
Under the following constraints: 

 

1

2

2

2

( ) 1
( ) 1
( ) 1
( ) 1

g
g
g
g

≤
≤
≤
≤

x
x
x
x

 (13) 

 

 

l u
f f f

l u
w w w

l u
f f f

l u
w w w

b b b

h h h

t t t

h h h

≤ ≤

≤ ≤

≤ ≤

≤ ≤

 (14) 

where  

 

1 ,

2 , ,

3 ,

4 max lim

( ) ( ) / ( )
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being ,c rdM , , ,i pl RdV , ,b rdM  and limδ  calculated according to Eurocode 3 

 
1) Bending moment 
This constraint is given by the following formula of Eurocode 3: 
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 ,ed c rdM M≤  (16) 

where 21
8edM qL=  is the calculus bending moment and ,c rdM  is the allowable bending 

moment. This is given by relation: 

 ,
0

y
c rd pl

M

f
M W

γ
=  (17) 

 
where yf  the yield strength of the steel, plW  is the plastic moment of the section (for section 

of class 1 and 2) given by the following equation, and 0 1.05Mγ = . 
 

 
2

( )
4

w w
pl f f w f

t hW b t h t= + +  (18) 

 
2) Shear 
This constraint is given by the following formula of Eurocode 3: 
 

 , ,ed i pl RdV V≤  (19) 
 

where 
2ed
LV q=  is the calculus shear and , ,i pl RdV  is the allowable shear. This is given by: 

 ,
, , ,

0

, 2
3

v i y
i pl Rd v i f f w f

M

A f
V A A b t t t

γ
= = − +  (20) 

being ( )2 f f w wA b t t h= +  the total section area. 
 
3) Flexural buckling 
A laterally unrestrained member subject to major axis bending should be verified against 

lateral-torsion buckling by means of the following inequality given by Eurocode 3:  
 

 ,ed b rdM M≤  (21) 
 

where edM  is the design value of the moment and ,b rdM  is the design buckling resistance 
moment. 

The design buckling resistance moment of a laterally unrestrained beam for section of class 
1 and 2 is  

 ,
1

yk
b Rd LT pl

M

f
M Wχ

γ
=  (22) 

 
1Mγ =  is the safety factor for the instability, whereas LTχ  is a reduction factor and can be 
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evaluated by means relation:  

 

( )

2 2
2

2
,0

1
1

1

0.5 1

LT

LT LT LT
LT

LT LT LT LT LT

χ
βλ λ

α λ λ βλ


= ≤ 

Φ + Φ − 
 Φ = + − + 

 (23) 

 
In equation (23) LTα  is the imperfection factor which corresponds to the appropriate 

buckling curve. The recommended values are given in table 1: 
 

Table 1. Imperfection factor LTα  

Buckling curve a b c d 

Imperfection factor LTα  0.21 0.34 0.49 0.76 

 
 

The recommendation for buckling curves given by EC3 for rolled section are (Table 2):  
 

Table 2. Buckling curves 

Cross section Limit Buckling curve 

 
/ 2fh b ≤  

/ 2fh b >  

b 

c 

 

In addition, Pl y
LT

cr

W f
M

λ = , where crM  is the elastic critical moment for lateral-torsion 

buckling and it is based on gross cross sectional properties and takes into account the loading 
conditions, the real moment distribution and the lateral restraints. It is furnished by EC3 in the 
Appendix B by the following formula: 

 

 
( )2 22

1 2 2( )
tWz

cr
W Z Z

kL GIIEI kM C
kL k I EI

π
π

 
= + 

 
 (24) 

 
In equation (24) 1C  is a coefficient which takes into account of distribution of moment and 

it is equal to 1.132 for a simply supported beam, whereas terms k  and wk  are the effective 
length coefficients which depend on restraint conditions and are assumed equal to 1.  

Moreover: 
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• 3 31 2
3t f f w wI b t h t = +   is the torsion constant;  

• 
3

2

24
f f

W w

t b
I h=  is the warping constant; 

• 
3 3

2
12 12
f f w w

Z

t b h tI = +  is the inertia moment around the minor axis; 

• L is the distance between two lateral restraints. 
 
For rolled section or equivalent welded section EC3 for ,0LTλ recommends the values 0.4. 

Finally 0.75.β =  
 
4) Displacement constraint 
The displacement constraint is expressed by the following relation:  
 

 max limδ δ≤  (25) 
 

where 
4

max 348
qL

EJδ =  is the maximum deflection of the beam and lim 200
Lδ =  is given 

by EC3.  
The constant parameters used in the optimization problem are given in Table 3: 
 

Table 4. Constant input parameters in optimal design of simply supported beam 

Parameters E L fy γ 

Unit MPa mm MPa kg/m3 

Value 200000 5000 235 7850 
 

Table 5. Lower bound and the upper bound of design variables 

Parameters tf bf tw hw 

Unit mm mm mm mm 

Upper Bound 13 200 10 200 

Lower Bound 5 120 5 120 

 
The problem has been solved through the use of Differential Evolution Algorithms with 

200 elements from the initial population analyzed over 500 generations. The parameters used 
in the DEA (Differential Evolution Algorithms) are F1 =F2=0.5 and pc= 0.5. 

The lower bound and the upper bound of design variables are listen in Table 5 
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Table 6: Optimal values of geometrical parameters and the objective function 

tf bf tw hw  

mm mm mm mm 

12.997 120.003 5.000 199.993 
1616.894 

 

 
Figure 3. Variation of the objective function at each generation 

 

 
Figure 4. Variation of the individual in each generation variable tf 
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Figure 5. Variation of the individual in each generation variable bf 

 

 
Figure 6. Variation of the individual in each generation variable tw 
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Figure 7. Variation of the individual in each generation variable hw 

 
In this specific analyzed problem, that is strongly representative of many similar steel 

structure optimization problems, results are obtained within a relatively short time with an 
accurate precision. The optimal size of the IPE is shown in Table 6.  

The optimal height (hw) is found to be equal to 200 mm; the comparison of this result with 
the size of the business's IPE shows that it is necessary to use a business profile of IPE400 in 
order to observe the remaining calculated size of the beam. The value of the height of the 
commercial division (hw) is 50% higher than the optimum needed value, the value of the width 
wing of the commercial division (bf) appears to be increased by 33.3%, the value of web’s 
thickness of the commercial division (tw) appears to be increased by 41.86% and the value of 
the height of the wing of the commercial division (tf) appears to be increased by 3.7%. 

The numerical results have been reported in Figures 3-7 that show how the development of 
the best individual, of the average value and the performance of the objective function at each 
generation is the better. 

 
3.2. A Welded Beam Optimal Design 

In this second case of study, the optimization is aimed at determining the lowest cost of 
construction of a shelf welded and loaded at the free end beam. For convenience, the 
parameters characterizing the project are expressed in the Anglo-Saxon metric system and 
then later they will be converted into the International System. 
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Figure 8. Illustrative pattern of the problem  

 
The problem of optimal is bound by the shear stress (τ) calculation, by the tension due to 

bending moment (σ), by the critical load acting on the rod (PC), by the beam bending 
deflection (δ), and by the geometric constraints. The parameters are calculated from the width 
of the beam (b), height (t), the height of the weld bead (h) and the length of the cord itself (l). 

The optimum design attempts to minimize the cost function, including the cost of welding, 
the cost of labor and material, i.e.: 

 
 2

1 2(1 ) ( )c c h l c bt L l= + + +  (26) 
 

where c1 is the unit cost for volume of welding material (6.3898x10-6 €/mm3), c2 is the unit 
cost for volume of the bar (2.9359x10-6 € /mm3) and finally L is the distance from the load 
application, which in this case is equal to 356 mm. 

For this structure the following optimization problem is then posed: 
 

Minimize  
 ( ) 4( ), , , ,c h l t b= ∈x x R  (27) 

 
Under the following constraints: 
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being: 

 2 2''( ) ( ') 2 ' ( '')
2

l
R

τ
τ τ τ τ= + +x  (31) 
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 (36) 

 

            
Figure 9. Element welded respectively on two or four sides 

 

The constant parameters used in its optimization problem are listen in Table 7: 
 

Table 7. Constant parameters of the problem of beam welded 

P L E G 

Lb kgf in mm psi MPa psi MPa 

6000 2721 14 355.60 3.00E+07 2.07E+05 1.20E+07 8.27E+04 

 

   
in mm psi MPa psi MPa 

0.25 6.35 3000 2.07E+02 13600 9.38E+01 

 
This application allows to search for the optimum constrained by geometric factors, stress 

and deformation in the civil and structural field. The problem was solved through the use of 
Differential Evolution Algorithms with 200 elements from the initial population analyzed over 
500 generations. Moreover, the parameters used in the DEA (Differential Evolution 
Algorithms) are F1 = F2 = 0.5 and pc = 0.5. 

The input variables parameters in the problem are given in Table 8: 
 

Table 8. Input parameters variability of the welded beam problem 

Parameters h L t b 

Unit in mm in mm in mm in mm 

Upper bound 0.500 12.700 7.500 190.50 7.200 182.88 1 25.40 

Lower bound 0.125 3.175 2.500 63.50 3 76.2 0.100 2.54 
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The results of the optimal design of the bracket welded and loaded at the free end through 
the use of DEa are carried out both in the case of welding on two and four sides and are 
shown in the Tables 9 and 10: 

 
Table 9. Design values and objective function (case of 2-sided Welded) 

h l t b cost 

in mm in mm in mm in mm 

0.423 10.744 2.658 67.513 7.084 179.934 0.335 8.509 
2.427 

 
Table 10. Design values and objective function (case of 4-sided welded) 

h l t b cost 

In mm in mm in mm in mm 

0.234 5.944 2.500 63.500 7.084 179.934 0.335 8.509 
2.034 

 
Figures 10, 11, 12, 13, 14 show how the best individual of each variable varies at each 

generation until it reaches its optimum value. These figures also take into account the different 
ways in which it was made the welding of the beam, the average value of each variable at 
every generation in order to evaluate the difference between the two cases.  

Figure 10 shows the variation of OF during the generation and for both cases of a 
beam welded on two and on four sides. This last figure also shows the variation of the OF 
average value. 

 

 
Figure 10. Variation of the objective function at each generation 
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Figure 11. Variation of the variable h for each generation in case of a beam welded on both sides 

and of a beam welded on all four sides  
 

 
Figure 12. Variation of the variable l for each generation in case of a beam welded on both sides 

and of a beam welded on all four sides 
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Figure 13. Variation of the variable t for each generation in case of a beam welded on both sides 

and of a beam welded on all four sides 
 

 
Figure 14. Variation of the variable b for each generation in case of a beam welded on both sides 

and of a beam welded on all four sides 



R. Greco and G.C. Marano 

 

470 

Also in this second analyzed problem, the DEA has achieved the best result in short time 
and with an accurate precision. Tables 9 and 10 show the results obtained for the case of a 
beam welded on two sides and for the case of a beam welded on all four sides. 

By comparing the values obtained, it is clear that for the beam welded on all four sides, the 
dimension of the height of welding (h) is halved to about 44.7%, the size of the weld length (l) 
decreases modestly by approximately 5.9%, while the size of the beam section welded 
remains unchanged. Figures 10-14 show the evolution of the best individual and of the 
average value at each generation and the objective function.  

Therefore, through this study it is possible to deduce that for a structural design of a steel 
section in a short time it is possible to apply Differential Evolution Algorithms. This method 
demonstrates how the effective solution of structural optimization problems by DEa allows the 
design of steel elements at the lowest cost, since the solution is characterized by the minimum 
required size and then by a small weight, while always respecting the constrains and boundary 
conditions. 

 
 

4. CONCLUSIONS  
 

This paper has been aimed to understand the efficiency of Differential Evolution Algorithm for 
solving problems of structural optimization by means of two simple but very significant cases 
of study referred to steel elements. This approach is used since it appears more user-friendly 
than that other Evolutionary Algorithms such as Genetic Algorithm (GA). Two main positive 
aspects must be considered: first, the functionality of the DE Algorithm is based on operators 
simpler than those advanced of GA. In addition, it requires only a small set of control 
parameters (usually the total number of control parameters is significantly lower than those 
adopted by the GA) so that the phase of preparation requires only a low time and it is more 
practical for non-experts in the field of Soft Computing techniques.  
The DE Algorithm proposed is here developed for solving steel structures optimization 
problems in a practical way. It is organized by an approach which limits the number of 
parameters to be tuned by final operators; moreover, it uses a specific constraints handling 
technique, that assures the final solution is feasible.  

The proposed algorithm is applied to some practical cases to verify its appeal and 
simplicity, more than its effectiveness. 
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LIST OF SYMBOLS 

 
x =  {x1,…, xj,…,xD} -- design vector 

( )f x -- objective function 
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( )ig x --inequality constraint 
( )ih x --equality constraint 

lx -- lower bound of design vector 
ux  --upper bound of design vector 

{ },0 1, ,0 1, ,0 , ,0, , ..., 1,2,...i i i D ix x x x i NP= = --initial population 

x l
j --lower bound of jth element of design vector 

x u
j -- upper bound of jth element of  design vector 

{ }, 1, , 1, , , ,, , ..., 1,2,...i g i g i g D i gx x x x i NP= =  -- current parent population 

  ,i gv - mutation vector 
r0, r1 and r2--integers 

0,r gx -vector of current parent population 

iF -- mutation factor 

1, 2,r g r gx x−  --difference vector  

,i gx --parent vector 

,best gx --best vector at the current generation g 

, ,j i gv --jth components of the mutation vector ,i gv  at generation g 

, ,j i gx  --jth components of the the parent vector ,i gx  at generation g 

( ), 1, , 1, , , ,, , ...,i g i g i g D i gu u u u= -- nal trial vector 

( , )jrand a b -- uniform random number on the interval (a, b] and newly generated for 
each j  

int (1, )rand jj rand D= --integer randomly chosen from 1 to D and newly generated for 
each i  

[ ]0,1iCR ∈ -- crossover probability 

,i gu -- trial vector  

( ),i gxΦ --violation function
 

yf -- steel yield stress 
q  --uniformly distributed load 

gγ  --permanent load safety coefficient  

kG  --characteristic permanent load 

qγ -- accidental load safety coefficient  

kQ  --accidental permanent load 
w -- weight of the beam 
γ --specific load of the steel 
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L  --length of the beam 
fA -- are of the flange of the beam 

wA -- area of the web  

ft  --thickness of the wing  

fb  --width of the wing 

wt -- thickness of the web 

wh -- height of the web 
l

fb --lower bound of width of the flange 
u

fb  --upper bound of width of the flange 
l

wh  --lower bound of the height of the web 
u

wh -- upper bound of the height of the web 
l

ft -- lower bound of the thickness of the flange  
u

ft  --upper bound of the thickness of the flange  
l

wh  --lower bound of the height of the web 
u

wh  --upper bound of the height of the web 

edM --calculus bending moment  

,c rdM  --allowable bending moment 

edV --calculus shear 
 , ,i pl RdV  --allowable shear 

 ,b rdM  --design buckling resistance moment 

limδ --limit displacement  

plW  --plastic moment 

0Mγ  --safety coefficient  
A --total section area 

,v iA  --shear area 

LTχ --reduction factor 

crM  --elastic critical moment  

1Mγ  --safety factor for the instability 
0.75.β =  

LTλ - lateral -torsion slenderness coefficient 

,0LTλ = 0.4 

LTα  --imperfection factor 

1C  --coefficient which takes into account of distribution of moment 
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E  --elastic modulus  
k  , wk  --effective length coefficient. 

WI  --warping constant 

ZI  --inertia moment around the minor axis 
G --shear modulus 

tI  --torsion constant 
τ --shear tension  
σ --tension due to bending moment 
δ --beam bending deflection 
PC --critical load  
b --width of the beam 
t --height of the beam  
h --height of the weld bead  
l --length of the cord itself  
c --cost function 
c1 -- unit cost for volume of welding material 
 c2 --is the unit cost for volume of the bar  
L --distance from the load application 

lh  --lower bound of h 
uh  --upper bound of h 

ll  --lower bound of l 
ul --upper bound of l 
lt --lower bound of t 
ut --upper bound of t 
lb --lower bound of b 
ub --upper bound of b 
maxτ --maximum shear stress 

maxσ --maximum normal stress 

maxδ --maximum displacement 
( )cP x --critic load 

 


